
Tutorial - Getting Started with Natural
This tutorial is designed to provide a basic understanding of specific features of the Natural programming
environment and illustrates how an application can be structured as a group of modules. It is not intended to provide
an example of how an application should be built.

These sessions also represent a general introduction to how the editors can be used. Therefore explanations are kept
to a minimum. This tutorial is not intended to be a comprehensive description of the full range of possibilities
provided by the Natural editors. For a full description of all editor functions and features, please refer to the
corresponding sections in this documentation:

Program Editor | Data Area Editor | Map Editor | DDM Editor | Dialog Editor

Prerequisite:
To perform all steps of this tutorial, the database SAG-DEMO-DB must be installed and active. To start the
database, double click the SAG-DEMO-DB icon in the Natural program group.

Session 1 - Creating and Modifying a Program
Session 2 - Creating and Editing a Map
Session 3 - Checking and Running a Program
Session 4 - Creating a Local Data Area
Session 5 - Creating a Global Data Area
Session 6 - Creating an External Subroutine
Session 7 - Invoking a Subprogram

Session 1 - Creating and Modifying a Program
In this session, you will create and save a Natural program, using the program editor to enter source statements in a
program editor window.

Step 1

Natural user-written applications are stored in libraries. It may be necessary to move from one library to another in
order to perform a maintenance function or work on a different application. The application created in these sessions
will be stored in the SYSEXPG library.

Select the SYSEXPG library node in the library workspace.

 To open the library SYSEXPG

1. From the tree view, choose "System Libraries".
2. Scroll to SYSEXPG and select it.

1Copyright Software AG 2001

Tutorial - Getting Started with NaturalTutorial - Getting Started with Natural

Step 2

Natural offers two modes of programming: structured mode and reporting mode.
Software AG recommends that you use structured mode exclusively, because it results in more clearly structured
applications. Therefore all explanations and examples in this chapter refer to structured mode. Any properties of
reporting mode will not be taken into consideration. You must be operating in structured mode to work through the
sessions in this chapter.

If the current mode is reporting mode, change it to structured mode:

 To do so

1. From the Tools menu, choose Session Parameters > Compiler options.
2. Select "Structured Mode".
3. Choose OK .

Step 3

The SYSEXPG library should include the program used in this session, PGM01. In this step, you will either edit or
create the program.

Edit PGM01

If PGM01 is available, edit the program.

 To open PGM01 for editing

Expand the library node, expand the "Programs" node, select the Program PGM01 and press ENTER.

Copyright Software AG 20012

Tutorial - Getting Started with NaturalSession 1 - Creating and Modifying a Program

Create PGM01

If PGM01 is not available, you can create it.

 To open a new program editor window

Open the context menu of the "Programs" node and select the New item.
The program editor window is displayed:

 To modify "Program Editor Options"

If line numbers are not usable, you can modify them.

1. From the main menu bar select Tools > Options > Program Editor .
2. Set "Line Numbers" check box.

Step 4

 To save the program under the name "PGM01"

1. From the Object menu, choose Save.
If the program already exists in the library, then it is saved. Go to Step 5.
If the program does not yet exist in the library, the "Save as" dialog box appears.

2. In the "Name" text box, enter "PGM01".
3. Choose OK .

The program is now saved under the name "PGM01" in the library SYSEXPG.

Step 5

 To close PGM01 before ending the session

From the Object menu, select Close or press CTRL-F4 .

End of Session 1.

3Copyright Software AG 2001

Session 1 - Creating and Modifying a ProgramTutorial - Getting Started with Natural

Session 2 - Creating and Editing a Map
The Natural map editor is used for creating the maps referenced in a Natural program. Once a map has been created,
it can be stored in the Natural system file, where it can be invoked by a Natural program using a WRITE or INPUT
statement.

A map consists of fields. A field can be a text field (a constant) or a data field (a variable), or any of the graphical
user interface elements provided in the map editor’s "Insert" menu. The fields that comprise a map can be defined
direct in the map editor window, or imported from another source object, such as a DDM, a program, or a data area.
Natural system variables can be imported as well.

In this session, you will create a map that contains text fields, data fields, and system variables.

Step 1

In the previous session, the screen prompting for an employee name was produced through the INPUT USING MAP
statement using MAP01. In this session, you will create the map. Note that in the INPUT USING MAP statement,
the map must be specified in quotation marks to distinguish the map from a user-defined variable.

 To open a new map editor window

Open the context menu of the SYSEXEVT node and select the New > Map item.
The map editor window appears.

Step 2

A text field is a constant that you create using the text field entry in the Insert menu, or that you import from another
Natural object. Its format is always A (for alphanumeric).

You can create a title for the map by drawing a text field and defining the text it will contain.

 To do so

1. From the Insert menu, choose Text Constant.
Or click the Text Constant toolbar button.

2. Place the text field at the top of the editor, where you want the field to begin.
3. Draw a field by holding down the left mouse button and dragging the mouse to the right about half the width of

the editor.
The text field you have just drawn is still selected. When a field is selected, its field handles appear.

The field must be selected before you can perform many of the map editor functions, such as defining a field and
selecting a color for the field.

 To define the text field

Copyright Software AG 20014

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

1. Point to the field and double-click.
Or, from the Field menu, choose Definition .
In the text field, you can now enter the text.

2. Type "SOFTWARE AG EMPLOYEE INFORMATION".
Select the field again by clicking the mouse with the pointer outside the field and then with the pointer on the
field.

5Copyright Software AG 2001

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

 To select a color for the text field

1. From the Field menu, choose Color.
Or click the Field Color toolbar button.

2. Select any color you want for this field. (Click the name of the color or its Option button.)
3. Choose OK .

"SOFTWARE AG EMPLOYEE INFORMATION" appears on the map in the color you selected.
4. To deselect the field, move the pointer away from the field and click.

The field handles disappear.

Step 3

Natural system variables can be imported into a map. The system variables *DATX and *TIMX display the current
date and time, when the program that invokes the map is executed.

 To import the *DATX system variable

1. From the Insert menu, choose Import .
2. Choose System variable. The "Import System Variable" dialog box appears.
3. Scroll to *DATX and select it.
4. Choose Import . The system variable will appear in the top left corner of the map.
5. Choose Quit to close the dialog box.
6. Move the *DATX field cursor below SOFTWARE AG EMPLOYEE INFORMATION.
7. Select a color for the *DATX field.

Import the *TIMX system variable. Use the same procedure you used to import the *DATX system variable.
Select a color for the *TIMX field, then move *TIMX to the line below *DATX.
The map should now look as follows.

Step 4

New fields can be created by copying and redefining existing fields.

 To copy a field to the clipboard

1. Select the text field "SOFTWARE AG EMPLOYEE INFORMATION".
2. From the Edit menu, choose Copy.

Copyright Software AG 20016

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

 To paste the copied field into the map

1. From the Edit menu, choose Paste.
2. Drag the copied field from the top left corner to below the *TIMX field.

Notice that this field is the same color as the field you copied. If you want to change its color, from the Field
menu, select Color.

 To define the new field in the "Text Field Definition" dialog box

1. Point to the field and double-click.
Or, from the Field menu, choose Definition .
In the text field, you can now enter the text.

2. Type "PLEASE ENTER STARTING NAME:".

Step 5

A data field is a field that you create using the Data field entry in the "Insert" menu, a field that you import from
another Natural object, or a Natural system variable.

In this step, you will draw a data field and define its attributes.

 To draw the data field

1. From the Insert menu, choose Data Field.
Or click on the data field drawing tool toolbar button.

2. Place the data field to the right of PLEASE ENTER STARTING NAME:
3. Draw a field that is 20 characters long. (Using the mouse, drag the data field across the map until Len=20).

7Copyright Software AG 2001

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

 To define the data field

1. Point to the field and double-click.
Or from the Field menu, choose Definition .
The "Field Definition" dialog box appears:

2. In the "Field" text box, delete the name and type in "#NAME-START". Press the TAB key.
Format "A" (alphanumeric) is the correct format for this field.
The alphanumeric length of the field should be "20". If not, use TAB to move the cursor to the "Length" field
and enter "20".

Copyright Software AG 20018

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

 To specify attributes for the data field

1. Choose Attributes .
The "Attribute Definitions" dialog box appears.

2. Select the "I/O Characteristics" list box and select "Output, Modifiable" to define the field as an output field that
can be modified.

3. Enter underscore () as filler character.
This is the character that is used to fill any empty positions in input fields in the map, allowing the user to see
the exact position and length of a field when entering input.

4. Choose OK .
The "Field Definition" dialog box is displayed again.

5. Choose OK to save the data field definition that you entered.
The map could now look as follows:

9Copyright Software AG 2001

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Step 6

In this step, you will edit the map to add an ending name for a range of employees.

In the same way as you have created text fields and data fields so far, draw and define another text field and another
data field.

 To draw and define the "PLEASE ENTER ENDING NAME:" text field

1. Choose Insert > Text Constant to create the text field and draw a field 25 characters long, one line below
"PLEASE ENTER STARTING NAME:"

2. In the text field, enter PLEASE ENTER ENDING NAME:
3. Select a color for the text field.

 To draw and define the data field "#NAME-END"

1. Choose Insert > Data Field to draw a field 20 characters long, one space to the right of the text constant.
2. In the "Data Field Definition" dialog box, enter "#NAME-END" as the field name (the format is "A" and the

length is "20").
3. Choose Attributes and select "Output, Modifiable" as the I/O Characteristic.
4. Choose OK twice.
5. Select a color for the "#NAME-END" data field.

The output of this data field is a user-defined variable found in the DEFINE DATA statement of PGM01 that will
correspond to the new field definition entered on the map.

Step 7

 To center the field "SOFTWARE AG EMPLOYEE INFORMATION" at the top of the map

1. Select the field.
2. From the Field menu, choose Alignment.
3. From the cascading menu, choose Map center.

The text moves to the center of the map.

 To move fields to different locations in the map:

1. Move the "*DATX" field to the top line of the map (Row=1).
2. Move the "*TIMX" field to line three (Row=3), directly below the "*DATX" field.

Copyright Software AG 200110

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

Step 8

In this step, you will move ranges of fields to new locations.

 To position the first range of fields

1. Select a range of fields that contains the text field "PLEASE ENTER STARTING NAME:" and the
"#NAME-START" data field.
Select the fields by holding down the left mouse button and dragging the mouse to surround the fields. Release
the mouse button to select the fields.

2. Move the range to line five of the map (Row=5).
Move the range by placing the selector tool within the field handles and dragging the range to the new location.

 To position the second range of fields

1. Using the same method as above, select the text field "PLEASE ENTER ENDING NAME:" and the data field
"#NAME-END".

2. Move the range to Line Seven of the map (Row=7).
The map now looks as follows.

Step 9

The first time you save a map, you must give it a name. After the map is named, you can make changes to it and save
it or stow it without entering the name. If you want to save a modified map with a different name, choose "Save as"
and enter a different name.

 To save the map and give it a name

1. From the Object menu, choose Save As.
The Save As dialog box appears. The current library is SYSEXPG, the library where the map is saved.

2. In the "Name" text box, type "MAP01".
3. Choose Save.

The map is saved as MAP01 in the SYSEXPG library.

11Copyright Software AG 2001

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Step 10

Now, you will create a processing rule for a map field.

 To define a processing rule for the #NAME-START data field

1. Click the #NAME-START field once to select it.
2. From the Field menu, choose Rules.

The "Field Rules" dialog box appears.
3. Choose Create.

A program editor window opens. Enter the following processing rule:
IF & = ’ ’ REINPUT ’PLEASE TYPE IN A NAME’
 MARK *&
END-IF
*

Note:
The ampersand (&) in the processing rule will be dynamically replaced by the name of the field.

 To save the processing rule and give it a rank

1. From the Object menu, choose Save as. The "Rule Selection" dialog box appears.
2. From the list box, select "1", and then choose OK .
3. Close the "Map Rule" (program editor) window by choosing Close from the Object menu.

The window closes and MAP01 reappears.

Step 11

In this step, you will test MAP01 to check whether it works as intended.

 To test the map

1. From the Object menu, choose Test.
The map, including the processing rule, is executed. This is the same screen that appears when the map is
invoked from PGM01:

2. Type in a name and press ENTER.
You are returned to the map editor.
When you do not enter a name and press ENTER, the message "Please enter starting name" is displayed in the
message line.

Copyright Software AG 200112

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

Step 12

When the map has been successfully tested, it has to be stowed; that is, stored in both source and object form.

 To stow the map

From the Object menu, choose Stow.

Step 13

The next step is to create a helproutine and attach it to a field in a map.

 To modify the field definition for the field "#NAME-START"

1. Select the field "#NAME-START".
2. Either select Definition from the Field menu or point to the "#NAME-START" field and double-click.

The "Field Definition" dialog box appears.
3. Use TAB to move to the "Help Routine:" text box, and enter "’HELP001’" (do not forget the quotation marks).

"HELP001" (which is yet to be created) is the name of the helproutine that is invoked when a user presses the
HELP key while the cursor is in the "#NAME-START" field.

4. Choose OK .
The map editor window appears.

5. Stow the map (that is, store it in source and object form) by choosing Stow from the Object menu.
6. From the Object menu, choose Close.

Step 14

Now the helproutine itself has to be created.

 To create the helproutine

Open the context menu of the "SYSEXEVT" node and select the New > Helproutine item.

End of Session 2.

13Copyright Software AG 2001

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Session 3 - Checking and Running a Program
In the previous session, you added a variable called #NAME-END to MAP01. This variable allows the program to
provide an ending point for the READ statement. Otherwise, all employees from JONES to the end of the alphabet
would be included in your report.

Now that the map allows both the beginning and ending name to be provided on the input screen, an IF statement
must be added to the PGM01 program.

Step 1

Make sure that SYSEXPG is the current library.

In the "Programs" folder, scroll to "PGM01" and select it.

The program editor is invoked and the current version of the program PGM01 appears.

For easier editing, you can maximize the program editor window by clicking the "Maximize" button.

Step 2

The program includes the following statement:

 MOVE #NAME-START TO #NAME-END

Replace this statement with the following IF statement:

 IF #NAME-END = ’ ’
 MOVE #NAME-START TO #NAME-END
 END-IF

Step 3

You can add user comments to a program to identify the program modifications that you have made. A user
comment helps anyone editing or maintaining a source program and is ignored during processing.

A user comment is entered by inserting a statement line or lines. If the entire line is to be reserved for a user
comment, enter an asterisk and a blank (*) or two asterisks (**) in columns 1 and 2 of the line and type in the
comment. If you want to place a comment in the same line of source code, separate the code from the comment with
" /*" (a blank, a slash and an asterisk).

Add a comment to Line 3 to indicate that the program has been modified, for example:

 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT

Copyright Software AG 200114

Tutorial - Getting Started with NaturalSession 3 - Checking and Running a Program

Step 4

When you have completed the above modifications to PGM01, the program should look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * ---
 DEFINE DATA
 LOCAL
 01 #NAME-START (A20)
 01 #NAME-END (A20)
 01 #MARK (A1)
 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 02 PERSONNEL-ID (A8)
 02 NAME (A20)
 02 DEPT (A6)
 02 LEAVE-DUE (N2)
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME-START = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #NAME-END = ’ ’
 MOVE #NAME-START TO #NAME-END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME-START
 THRU #NAME-END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

15Copyright Software AG 2001

Session 3 - Checking and Running a ProgramTutorial - Getting Started with Natural

Save the modified version of PGM01 by choosing "Save" from the "Object" menu.

Step 5

Checking a program allows you to find and correct syntax errors that would otherwise prevent the program from
being compiled. In this step, you will create an error in the source code of PGM01. Then you will check the program
to identify the error, correct the error, and run the program.

 To create an error in the PGM01 source code

1. Edit PGM01.
2. Use the arrow keys or the Go to function of the Edit menu to move the cursor to the following line:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
3. Move the cursor to the second quotation mark and press DEL to remove the quotation mark.

Natural uses beginning and ending quotation marks to designate text strings. A text string must be closed on the
same line in which it was opened. When the Natural compiler finds an odd number of quotation marks on the
same line, then it reports a syntax error.

4. From the Object menu, choose Check.
When the error is detected, syntax checking is suspended. The line that contains the error is displayed, and the
following error message appears:
NAT0305 TEXT STRING MUST BEGIN AND END ON SAME LINE

 To correct the error and check the program again

1. Add an quotation mark directly, and press the CONTINUE button.
Or press ENTER to return to the program editor and make the correction.

2. From the Object menu, choose Check.
When the syntax error has been corrected, and if no other syntax errors are detected, you are informed that the
check was successful.

3. Choose OK .

Step 6

In this step, you will run the program PGM01 and view the output. When you run this program, you are prompted to
enter a name. The EMPLOYEES file is searched to locate all employees with that name; then a report that includes
the Name, Department and Leave Due to each employee with that name is displayed. The names of employees who
have 30 or more days leave due are marked with an asterisk.

The prompting screen is invoked at the INPUT USING MAP statement. The final report is formatted according to
information in the DISPLAY statement.

The processing required to show which employees have more than 30 days leave is handled in the portion of the
program starting with IF LEAVE-DUE. Those with 30 or more days of leave due have an asterisk in the final report
as a result of processing in the PERFORM statement and the DEFINE SUBROUTINE statement.

Copyright Software AG 200116

Tutorial - Getting Started with NaturalSession 3 - Checking and Running a Program

 To see if everything - including the map and the helproutine - works as intended

1. From the Object menu, choose Run to compile and execute the program PGM01.
The map MAP01 is displayed.

2. Press ENTER without typing in anything.
The following message is displayed:
PLEASE TYPE IN A NAME

3. In the first input field in the map, enter a question mark (?).
The helproutine HELP001 appears:
TYPE THE NAME OF AN EMPLOYEE.

4. In the first input field of the map, type the name MCKENNA, and press ENTER.
As there is no record with the name MCKENNA in the database, the following message is displayed:
PLEASE TRY ANOTHER NAME

5. In the first input field of the map, type the name SMITH, and press ENTER.
The database does include the name SMITH; the following list is displayed:

6. Press ENTER.
7. When the program prompts you again for a name, enter a period (.). Press ENTER again to return to the

program editor window.
8. Close PGM01.

End of Session 3.

17Copyright Software AG 2001

Session 3 - Checking and Running a ProgramTutorial - Getting Started with Natural

Session 4 - Creating a Local Data Area

In Session 1, the fields used by the program were defined within the DEFINE DATA statement in the program itself.
It is also possible, however, to place the field definitions in a local data area outside the program, with the program’s
DEFINE DATA statement referencing that local data area by name. For a clear application structure, it is usually
better to define fields in data areas outside the programs.

In this session, the information in the DEFINE DATA statement will be relocated to a local data area outside the
program. In subsequent sessions, some of this information can be used as the basis of a global data area shared by a
program and an external subroutine. As you will see later in this tutorial, an important advantage of data areas is to
allow a program and its external subroutine to share the same data in a single data area.

Step 1

In this step, you will create a data area with three data fields. Each data field must be defined separately.

 To open a local data area editor window

1. From the Object menu, choose New.
2. From the cascading menu, choose Local Data Area.

Copyright Software AG 200118

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

 To insert the first data field

1. From the Insert menu, choose Data Field.
The "Data Field Definition" dialog box is displayed.

In the "Level" text box the default "1" is displayed.
2. In the "Name" text box, enter "#NAME-START".
3. Format "A" is the correct format for the "#NAME-START" data field. (Alphanumeric is the default format).
4. In the "Length" text box, enter "20".
5. Choose Add.

The "Define a Data Field" dialog box appears again to allow you to define another data field.

Define a second and third data field with the following attributes:

Field Name Data Field 2 Data Field 3

Level: 1 1

Field: #NAME-END #MARK

Length: 20 1

Format: A A

When the "Data Field Definition" dialog box is displayed again, choose Quit to end the field definition process.

19Copyright Software AG 2001

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

The local data area now looks as follows:

Copyright Software AG 200120

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

Step 2

 To confirm that no syntax errors have been made

From the Object menu, choose Check.

Step 3

Variables defined in a Natural DDM can be imported directly into the local data area.

 To import fields from the "EMPLOYEES" DDM

1. Select the "#MARK" field.
2. From the Insert menu, choose Import .

The "Import View" dialog box appears with the name of the current library (SYSEXPG) in the "Library" list
box.

3. Open the "Library" list box and select the SYSEXDDM library.
A list of all DDMs in the SYSEXDDM library appears in the DDM list box.

4. Select the "EMPLOYEES" DDM.
A list of all the data fields in the "EMPLOYEES" DDM appears in the "Data Fields" list box.

5. Scroll through the list and select the following fields: "PERSONNEL-ID", "NAME", "DEPT", and
"LEAVE-DUE".
Note:
To select individual fields, hold down CTRL while you click the left mouse button.

6. Choose OK .
The "View Definition" dialog box appears.

7. Enter "EMPLOYEES-VIEW" as the name of the view.
8. Choose OK .

The imported fields appear in the local data area, after the "#MARK" field. The name of the view that contains
these fields (EMPLOYEES-VIEW) also appears in the data area and is identified with a V in the T (Type)
column.

21Copyright Software AG 2001

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

Step 4

 To check the new local data area

1. From the Object menu, choose Check.
2. If syntax errors are found, correct them; then check the local data area again.

Step 5

 To stow the new local data area

1. From the Object menu, choose Stow.
The "Stow As" dialog box appears.

2. In the "Name" text box, enter "LDA01".
As the library SYSEXPG is highlighted in the "Library" list box, the LDA01 local data area will be stored in
this library.

3. Choose OK .

Step 6

 To close the LDA01 local data area before continuing this session

From the Object menu, choose Close.

Step 7

In this step, the PGM01 program is modified to reference the LDA01 local data area. After removing the lines within
the DEFINE DATA statement that define variables, you will add a statement to reference the local data area.

 To edit PGM01

1. Open the SYSEXPG library and then, from the "Objects" window, open the program PGM01.
2. Maximize the program editor window for easier editing.
3. Remove the lines that define variables:

Place the cursor at the beginning of the line containing "#NAME-START" and use the mouse to select the
following text:

4. From the Edit menu, choose Delete.
5. Add a reference to LDA01 by entering the following statement in the blank line after LOCAL:

USING LDA01

Copyright Software AG 200122

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

The program should now look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * PROGRAM NOW USES A LOCAL DATA AREA
 * ---
 DEFINE DATA
 LOCAL
 USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #END = ’ ’
 MOVE #NAME TO #END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME
 THRU #END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

23Copyright Software AG 2001

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

Step 8

1. Check the PGM01 program and correct any errors.
2. Run PGM01 to confirm that the results are the same as when the DEFINE DATA statement did not reference a

local data area.
3. Stow PGM01 so that it is available for Session 5.
4. Close PGM01.

End of Session 4.

Copyright Software AG 200124

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

Session 5 - Creating a Global Data Area

In Natural, data can be defined in a single location outside any particular program or routine. Data defined in such a
global data area can then be shared by multiple programs/routines.

In this session, you will create a global data area. In addition, you will modify the local data area created in the
previous session. You will also modify the program so that it references not only the local data area, but also the new
global data area.

Step 1

The local data area that you created in Session 4 (LDA01) is stored in the SYSEXPG library. Before you start this
session, make sure that the SYSEXPG library is the current library.

You can create a new data area from an existing data area by editing the data area and saving it with a different name
and type. The original data area remains unchanged, and the new data area can be edited.

In this step, you will use the local data area LDA01 to create a global data area.

Open LDA01.

 To save LDA01 with the name "GDA01" and change the type to "GDA"

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter GDA01.
Do not change the name of the current library (SYSEXPG). The new global data area is stored in the SYSEXPG
library.

3. Open the "Type" list box and select "Global".
4. Choose OK .

The data area is saved as a global data area named "GDA01". GDA01 appears in the data area editor window.

Step 2

 To remove the data fields "#NAME-START" and "#NAME-END"

1. Select the fields "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

Note:
To select multiple fields, hold down the left mouse button and drag the mouse across the fields to be selected.

25Copyright Software AG 2001

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

The global data area should now look as follows:

Step 3

The new data area must be stowed before any program referencing that data area can be compiled.

 To stow the new data area

1. Stow GDA01 by choosing "Stow" from the "Object" menu.
2. Close GDA01 by choosing "Close" from the "Object" menu.

Step 4

Now that the new global data area has been created, the variables contained in it must be removed from the local data
area.

Open LDA01.

Copyright Software AG 200126

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

 To remove all the data fields that are now in the global data area GDA01 ("#MARK",
"EMPLOYEES-VIEW", and all remaining lines)

1. Select all fields except "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

The revised local data area now contains only the variables "#NAME-START" and "#NAME-END":

3. Stow the revised local data area.
LDA01 is now ready to be referenced by the program PGM01.

4. Close LDA01.

Step 5

The DEFINE DATA statement in the PGM01 program must now reference data that are located in the global data
area GDA01 as well as the local data area LDA01.

 To open PGM01, and add a reference to the global data area

1. Open PGM01.
2. Place the cursor at the end of the DEFINE DATA statement and press ENTER.
3. In the blank line created, type GLOBAL USING GDA01 and press ENTER.

27Copyright Software AG 2001

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

Step 6

In this step, you will revise the output instructions in PGM01.

In this step, you will modify the program PGM01 to include a WRITE TITLE statement, which produces a
multiple-line title in the resulting report, and modify the format of the DISPLAY statement.

 To do so

1. Insert a blank line after the following lines:
RESET #MARK
END-IF

2. Add the following WRITE TITLE statement:
WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’//
The "/" notation indicates a line break. The title lines are centered and are not underlined.

3. Change the DISPLAY statement as follows:
DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK

The revised program should now have the changes to the DEFINE DATA, WRITE TITLE, DISPLAY statements,
and the program header (comment) as shown below.

Copyright Software AG 200128

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * PROGRAM NOW USES A LOCAL DATA AREA
 * A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
 * THE DISPLAY STATEMENT HAS BEEN CHANGED
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #END = ’ ’
 MOVE #NAME TO #END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME
 THRU #END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’//
 *
 DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

29Copyright Software AG 2001

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

Step 7

After you have completed all changes:

1. Check the program and correct any errors that might exist.
2. Run the program, using "SMITH" as the name on the input screen.

Note the differences in the report output, which should have the following format:

3. After you have confirmed that PGM01 has no errors, stow it for future modification in Session 6 and close
PGM01.

End of Session 5.

Copyright Software AG 200130

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

Session 6 - Creating an External Subroutine

In Natural, a subroutine can be defined either within a program, or as an external subroutine outside the program.

Until now, the subroutine "MARK-SPECIAL-EMPLOYEES" has been defined within the program using a DEFINE
SUBROUTINE statement. In this session, the subroutine will be defined as a separate object external to the program.

Because both internal and external subroutines are invoked with a PERFORM statement, only minimal changes to
the program are required.

Step 1

In this step, you will create a subroutine named SUBR01:

Note:
This subprogram is contained in library SYSEXPG. If you have access to this library, you do not have to perform
this step.

 To open a new program editor window

1. From the Object menu, choose New.
2. From the cascading menu, choose Subroutine.
3. Enter the following statements:

* SUBR-ID: SUBR01
*
* FUNCTION: DEMONSTRATE NATURAL
* THIS IS A SUBROUTINE
*
*
*
*
*---

 To save the subroutine

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "SUBR01".
SUBR01 should be saved in the SYSEXPG library. If SYSEXPG is not the current library, from the "Library"
list box, select SYSEXPG.

3. Choose OK .

31Copyright Software AG 2001

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

Step 2

In this step, you will edit the program PGM01, copy two statements and paste them into the subroutine SUBR01.

 To edit the program PGM01

1. Use the Minimize button to minimize SUBR01.
Note:
You can reopen SUBR01 by clicking its icon or by choosing "SUBR01" from the "Window" menu.

2. Open PGM01.

 To copy the DEFINE DATA statement

1. Place the cursor at the beginning of the DEFINE DATA statement and drag the mouse until the following lines
are selected:
DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*

2. From the Edit menu, choose Copy.
The DEFINE DATA statement is copied and placed on the clipboard.

3. Use the Minimize button to minimize PGM01.

 To paste the copied statement into SUBR01

1. From the Window menu, choose SUBR01.
2. Place the cursor below the last comment line.
3. From the Edit menu, choose Paste.

The DEFINE DATA statement appears.
4. Cut the following DEFINE SUBROUTINE block from PGM01 and paste it into SUBR01. Follow the same

procedure as above but, from the Edit menu, choose Cut instead of Copy.
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
END-SUBROUTINE
*

5. Paste the block below the END-DEFINE in program PGM01.
6. Add an END statement at the end of the subroutine.

Copyright Software AG 200132

Tutorial - Getting Started with NaturalSession 6 - Creating an External Subroutine

Step 3

The subroutine SUBR01 should now appear as follows:

 * SUBR-ID: SUBR01
 *
 * FUNCTION: DEMONSTRATE NATURAL
 * THIS IS A SUBROUTINE
 *
 *
 *
 *
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

1. From the Object menu, choose Check to check SUBR01 and correct any errors.
2. From the Object menu, choose Stow to stow SUBR01.
3. From the Object menu, choose Close to close SUBR01.

33Copyright Software AG 2001

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

The program PGM01 should now look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL
 * PROGRAM NOW USES A LOCAL DATA AREA
 * A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
 * THE DISPLAY STATEMENT HAS BEEN CHANGED
 * THE SUBROUTINE IS NOW EXTERNAL
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME-START = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #NAME-END = ’ ’
 MOVE #NAME TO #NAME-END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME-START
 THRU #NAME-END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’ //
 *
 DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 END

Copyright Software AG 200134

Tutorial - Getting Started with NaturalSession 6 - Creating an External Subroutine

Step 4

1. Check PGM01 and correct any errors.
2. Run the program to confirm that the results are the same with an external subroutine as with an internal

subroutine.
3. Stow the program for the next session.
4. Close PGM01, saving your changes.

End of Session 6.

35Copyright Software AG 2001

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

Session 7 - Invoking a Subprogram

In Natural, both subprograms and subroutines can be invoked from a main program.

A subprogram is invoked using a CALLNAT statement. Data are passed from the main program (the calling
program) to a subprogram through a set of parameters that are referenced or defined in the DEFINE DATA
PARAMETER statement of the subprogram.

While a subroutine such as SUBR01 created in Session 6 shares a global data area with the main program, the
subprogram only receives data that are passed by way of a parameter list from the main program’s CALLNAT
statement.

In this session, the PGM01 program will be expanded to include a CALLNAT statement that invokes a subprogram.
In the subprogram, the employees identified from the main program will be the basis of a FIND request to the
VEHICLES file. As a result, your report will contain VEHICLES information from the subprogram as well as leave
due, etc. from the main program.

The new subprogram will require the creation of a local data area and a parameter data area. In this case, new
variables will be defined in the main program’s local data area, and this will in turn help create the subprogram’s
parameter data area variables.

Step 1

The local data area that you created in Session 4 (LDA01) is stored in the SYSEXPG library. Make sure that the
SYSEXPG library is the current library.

In this step, you will modify the LDA01 local data area to accommodate the new subprogram. The following fields
must be added to LDA01:

 #PERS-ID
 #MAKE
 #MODEL

These fields are referenced in the CALLNAT statement that you will add to the program PGM01 in a later step.

Open LDA01.

Copyright Software AG 200136

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

 To add the data fields

1. Select the field "#NAME-END".
2. From the Insert menu, choose Data Field.

The "Data Field Definition" dialog box appears.
In the "Level" text box, the default "1"is displayed.

3. In the "Name" text box, enter "#PERS-ID".
4. In the "Length" text box, enter "8".
5. Choose Add.

The field definition you entered is added to the LDA01 local data area, and the "Data Field Definition" dialog
box reappears, allowing you to define the next data field.

 To define the two remaining fields, "#MAKE" and "#MODEL", as you defined the "#PERS-ID" field,
enter a length of "20" for each field

1. Choose Quit to close the "Data Field Definition" dialog box and return to the data area editor window.
The local data area should now appear as follows.

2. Check and stow the LDA01 local data area.

Step 2

With minor modifications, the LDA01 local data area can be used to create the parameter data area that will be
needed for the subprogram.

In this step, you will delete two of the data fields in LDA01, then save the revised data area as a parameter data area
named PDA01. The original LDA01 local data area remains intact. (It is also possible to define the parameter data
area directly by using the menu to choose "Object > New > Parameter data area").

Open LDA01.

 To delete the data fields "#NAME-START" and "#NAME-END"

1. Select the fields "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

 To save the data area with the name PDA02 and data area type "Parameter"

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "PDA02".
3. Open the "Type" list box and select "Parameter".

37Copyright Software AG 2001

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

4. Choose OK.
Your parameter data area should now look as follows.

5. Check the new parameter data area and correct any errors.
6. In the SYSEXPG library, stow the parameter data area.
7. Close the parameter data area.

Step 3

The subprogram will also use variables that are local to the program. In this step, you will create a new local data
area.

 To open a new data area window to create a local data area

1. From the Object menu, choose New.
2. From the cascading menu, choose Local data area.

Copyright Software AG 200138

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Step 4

Fields contained in any Natural DDM can be imported into a data area. In this step, you will import several fields
from the VEHICLES DDM into the new local data area.

 To import fields from the VEHICLES DDM

1. From the Insert menu, choose Import .
The "Import View" dialog box appears with the name of the current library (SYSEXPG) in the "Library" list
box.

2. Open the "Library" list box and select the SYSEXDDM library.
A list of all DDMs in the SYSEXDDM library appears in the DDM list box.

3. Select the "VEHICLES" DDM.
A list of all the data fields in the "VEHICLES" DDM appears in the "Data fields" list box.

4. Select the fields "PERSONNEL-ID" through "MODEL" (drag the mouse across the fields to select them) and
choose OK.

5. In the "View Definition" dialog, choose OK .
The fields appear in the data area window.

39Copyright Software AG 2001

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

The local data area now contains fields imported from the "VEHICLES" DDM as shown below:

Copyright Software AG 200140

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Step 5

 To save the new local data area as LDA02

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "LDA02".
3. Choose OK .

The local data area is saved as LDA02 in the SYSEXPG library.
4. Check the new local data area and correct any errors.
5. Stow the new local data area.

LDA02 is now ready for use by the subprogram.
6. Close LDA02.

Step 6

The subprogram used in this session, SPGM02, receives the personnel number passed by the main program
(PGM01) and uses this number as the basis for a search of the VEHICLES file.

The SYSEXPG demo library should include the SPGM02 subprogram.

If SPGM02 is available, ensure that it has been stowed and then proceed directly to Step 7 (modifying the main
program) later in this session.

If SPGM02 is not available, you can create it. Instructions are provided below.

41Copyright Software AG 2001

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

 To open a new program editor window to create the subprogram

1. From the Object menu, choose New.
2. From the cascading menu, choose Subprogram.
3. Enter the subprogram shown below:

* PGM-ID: SPGM02
* --
DEFINE DATA
 PARAMETER
 USING PDA02
 LOCAL
 USING LDA02
END-DEFINE
*
FD1. FIND (1) VEHICLES
 WITH PERSONNEL-ID = #PERS-ID
 MOVE MAKE (FD1.) TO #MAKE
 MOVE MODEL (FD1.) TO #MODEL
 ESCAPE BOTTOM
END-FIND
*
END

4. Save SPGM02 and stow it.
5. Close SPGM02.

Step 7

In this step, you will modify the main program (PGM01) to accommodate the subprogram.

 To do so

1. Open PGM01.
2. Add the following statements immediately before the WRITE TITLE statement:

RESET #MAKE #MODEL
CALLNAT ’SPGM02’ PERSONNEL-ID #MAKE #MODEL

The parameters passed in the CALLNAT statement come from both the global data area and the local data area.
Also, the variables defined in the parameter data area of the subprogram do not have to have the same name as the
variables in the CALLNAT statement. Because the parameters are passed by address, it is only necessary that they
match in sequence, format, and length.

Copyright Software AG 200142

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Because the subprogram is now returning vehicle information, the DISPLAY statement must be modified as shown
below:

 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’ //
 DISPLAY 1X ’//N A M E’ NAME
 1X ’//DEPT’ DEPT
 1X ’/LV/DUE’ LEAVE-DUE
 ’ ’ #MARK
 1X ’//MAKE’ #MAKE
 1X ’//MODEL’ #MODEL

1. Check PGM01 and correct any errors.
2. Run PGM01.
3. Stow PGM01. Close PGM01.

End of Session 7.

43Copyright Software AG 2001

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

	Tutorial - Getting Started with Natural
	Session 1 - Creating and Modifying a Program
	
	Step 1
	Step 2
	Step 3
	Edit PGM01
	Create PGM01
	Step 4
	Step 5

	Session 2 - Creating and Editing a Map
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Step 13
	Step 14

	Session 3 - Checking and Running a Program
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Session 4 - Creating a Local Data Area
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8

	Session 5 - Creating a Global Data Area
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Session 6 - Creating an External Subroutine
	
	Step 1
	Step 2
	Step 3
	Step 4

	Session 7 - Invoking a Subprogram
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

